


Background

* No net-zero emissions by 2050 without the implementation and substantial expansion of negative emissions methods, that
should be started earlier (2040)

= Nearly 400 Gt CO,e (total cumulative amount ) must be removed globally between 2020 and 2100 (IPCC, 2023).

= |n Europe, between 222 and 391 Mt CO,e must be removed annually starting from 2040, with a target of 447 Mt CO,e from
2050 and beyond (European Commission, 2024)




Challenges of nhegative emission methods

» Land-based solutions (LULUCF) are currently dominant, but insufficient to meet EU targets

= Technology-based CDR such as direct air capture and carbon storage (DACCS) and bioenergy with carbon capture and
storage (BECCS) face challenges related to insufficient technological maturity and high energy demands

= The long-term storage of gaseous CO, > CO, transport infrastructure and Public acceptance

= Biochar carbon removal (BCR) as an alternative solution




Biomass as biogenic source of carbon

» Biomass gasification or combustion (BECCS)

» Thermal decomposition using pyrolysis (in the abscence of
0,)

= Biomass undergoes pyrolysis to produce biochar, a carbon-
rich solid with 65-90% carbon content

= Underground burial of biochar effectively traps its whole
carbon content for centuries

Thermal Decomposition using Pyrolysis




Biochar carbon removal (BCR)

= Also known as Pyrogenic Carbon Capture and Storage
(PyCCS)

= A promising negative emission technology due to its
technological readiness and potential co-benefits

= Sustainable liquid biofuel (by-product) contribute to
decarbonization in sectors such as shipping and aviation,
which rely on liquid hydrocarbons

= Biochar can be used in agriculture sector - still up to 80%
carbon remaining sequestered for over 100 years

Thermal Decomposition using Pyrolysis
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Research questions

= |s BCR an economically viable negative emission solution?

= |s there sufficient potential for BCR from sustainable biomass in Europe?




BCR process from a single source biomass
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Economic assessment of BCR at supply chain level

To achieve maximum cost efficiency from biochar as NET, an optimal set-up of the supply chain is necessary . Why?

» Biomass is widely distributed, but in some cases with insufficient quantities -> high production costs of biochar due to
the non-utilisation of economies of scale with a decentralised approach

» High transport costs of biomass-> make complete centralization unattractive

An optimization model to minimize total costs by :
=  Optimizing the technology capacities whitin every single conversion and upgrading plants
=  Optimizing the locations and capacities of conversion and upgrading plants

» [t should take the trade-off between production and transponrt costs into account.
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BCR supply chain designh
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BCR supply chain designh
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BCR supply chain designh
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BCR supply chain designh
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BCR supply chain designh
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BCR supply chain designh
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BCR optimization model

- Model: N o
Biomass Sources Conversion Plants Upgrading Plants

o Cost minimization model ( a mixed-integer nonlinear programming)
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BCR optimization model

= Parameters:

( BiomassSources ( Conversion Plants ( Upgrading Plants

o Technical/chemical assumptions:
Input data on mass and energy balances for biomass conversion and

hydrotreatment processes (vary depending on the type of biomass
and the process conditions)

o Economic assumptions:
CAPEX and OPEX of technologies
Process efficiencies/power consumption
Location-specific parameters such as electricity prices and interest
rates

Optimal Carbon (removal) Credit:

The minimum carbon credit to ensure achieving none negative NPV.
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Case study

= The model is applied to two case studies

o All available paper sludge and sewage sludge from European countries

o Biomass is transformed to biochar and biofuel using the thermo-catalytic reforming (TCR) process
» TCR developed by Fraunhofer (UMSICHT):

o A novel intermediate pyrolysis process

o Suitable for diverse biomass

o Offers the advantage of producing a more favorable liquid biofuel with a higher heating value compared to slow or fast
pyrolysis (substitute to conventional diesel)

» The model is calibrated on the basis of a scenario for 2035
» The input process parameters are taken from real experimental data by Fraunhofer and oil-refinery

» Further CAPEX and OPEX of TCR process are real estimations by a paper manufacturer in Germany



Biomass distribution

Distribution of biomass sources- Paper sludge

o 1,000 (t/y)

400,000 (t/y)

594 biomass sources
(European Environment Agency, 2024)

Distribution of biomass sources- Sewage sludge

° 1,000 (t/y)

Q 50,000 (t/y)

715 biomass sources
(European Environment Agency, 2024)

U

N



Results- Conversion plants

TCR® capacity- Paper sludge

TCR® capacity- Sewage sludge
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Conversion plants becomes non-viable at 482 Conversion plants becomes non-viable at 577
locations out of 594 potential places locations out of 715 potential places



Results- Optimal carbon credit & Carbon removal potential

Optimal carbon credit and CDR potential Optimal carbon credit and CDR potential
Paper sludge Sewage sludge

B <50 €/t-CO2

I <50 €/t-CO2

>50 and <150 €/t-CO2 >50 and <150 €/t-CO2

I >150 €/t-C02

O

I >150 €/t-C02
1,000 (t-CO2/y)

1,000 (t-CO2/y)
100,000 (t-CO2/y) OIO0,000 (t-CO2/y)
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Results- Optimal carbon credit & Carbon removal potential

Optimal carbon credit and CDR potential Optimal carbon credit and CDR potential
Paper sludge Sewage sludge

W <50 €/t-CO2

W <50 €/t-CO2
>50 and <150 €/t-CO2 >50 and <150 €/t-CO2
M >150 €1t-CO2  >150 €/t-CO2

1,000 (t-CO2/y) % 1,000 (t-CO2/y)
Olmw (t-co21y) Merit order curve for carbon credit Merit order curve for carbon credit Owo,ouu (tCo2/y)
Paper sludge Sewage sludge
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255 €/t-CO, (ranging from 187 to 386 €/t-CO,) 29 €/t-CO, (ranging from -34 to 397 €/t-CO,)
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Total annual costs and revenue breakdown

Paper sludge Sewage sludge
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More than 90% of total costs are offset by
revenue from selling by-products
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Costs and revenue breakdown per ton CO, removal
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Sustainable potential of biogenic wastes
and residues in Europe

[I EUROPE

I Forestry residues

I Agricultural residues
Livestock manure

Bl Msw
Sustainable potential (MT)
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Total amount of sustainable biogenic waste and residues in
Europe : 443 and 801 Mt (dry matter)

UTN

BCR potential from biogenic wastes and residues

using TCR in Europe

[ EUROPE
I CO2 removal potential (MT)
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CO, removal potential 203-619 Mt per year, that is

approximately equivalent to 8-25% of the EU total CO,
emissions in 2023.



Conclusion

= BCR can be cost-competitive negative emission method

= |ts cost-effectiveness vary by biomass type, quantity, location, and site-specific factors and require further analysis.
» Biochar from sewage sludge is more cost-effective than many other negative emission solutions.

= Potential for cost degression:

o A 50% reductionin TCR process investment costs could lower the carbon credit to 189 €/t CO, for paper sludge and -46
€/t CO, for sewage sludge.

o Revenues from selling biochar at market price (100 €/t)=> the carbon credit could decrease to 65 €/t CO, for paper
sludge and - 132 €/t CO, for sewage sludge.
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http://www.utn.de/

