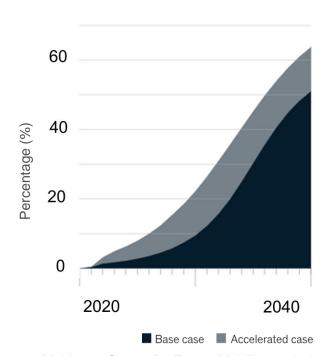


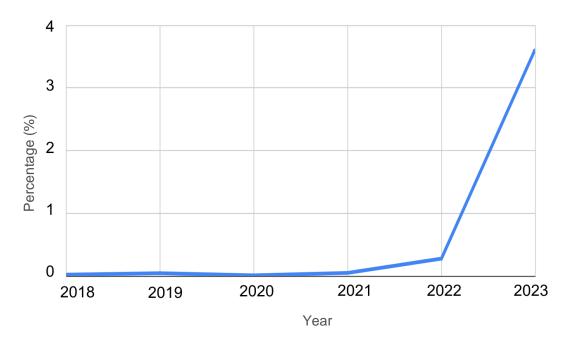
How can electric two-wheeler concepts shape a sustainable mobility sector in Sub-Saharan Africa

Assessing the economic, social and environmental sustainability potential of a battery-swap motorbike business model in Kenya

Hochhaus, Anne | Homp, Tobias | Pollacek, Lea Marie | Rodriguez Garcia, Viridiana Lizeth | Shrestha, Sundar Prof. Dr. Christian von Hirschhausen | Dr. Kristin Dietrich Department of Economic and Infrastructure Policy (WIP) | Technical University of Berlin

19th International Conference on Energy Economics and Technology | ENERDAY 2025 | 04.04.2025


Agenda


- 1. Motivation
- 2. Research Questions
- 3. Methodology
- 4. Results
- 5. Conclusion

Motivation

In 2023 70,691 motorcycles sold in Kenya

2,557 electric

3.6% of motorcycles sold in 2023 in Kenya were electric

Source: McKinsey Centre for Future Mobility analysis, 2021

Fig. Two-wheel electric vehicles Expected market share of in Sub-Saharan Africa by 2040

Source: NTSA, KNBS, Aug 2024

Fig. Electric Motorcycle Share (%) of Motorcycle Sales in Kenya

Research Questions

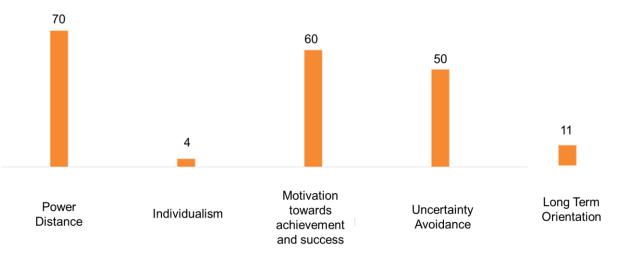
Ampersand's batteryswapping approach support ~ sustainable electrification of Kenya's mobility sector?

Critical success factors ~ similar battery-swapping business models in emerging markets?

Identified success factors ~ applied to Ampersand's operations in Kenya?

Analytical Frameworks Utilized

- Hofstede's cultural dimensions Theory
- Technological Innovation Systems Approach
- The Triple Layered Business Model Canvas
- Stakeholder Analysis



Provide insights into the **cultural**, **social**, **economic**, **and technological** factors influencing the success of e2w battery-swapping business models in the Kenyan context

Hofstede's Cultural Dimensions Theory

Source: https://www.theculturefactor.com/country-comparison-tool

Fig. Cultural Insights of Kenya according to Hofstede (Index out of 100)

Power Distance

Hierarchy, authority, centralized decisions

→ Government & fleet owners influence adoption

Individualism

Community-driven, collectivist, group decisions

→ Boda-boda groups drive adoption

Achievement & Success

Competitive, financial success matters

→ Riders adopt if they earn more

Uncertainty Avoidance

Moderate risk-taking, need proof

→ Trust & reliability needed for adoption

Long-Term Orientation

Focus on short-term gains

→ Immediate cost savings

Ampersand

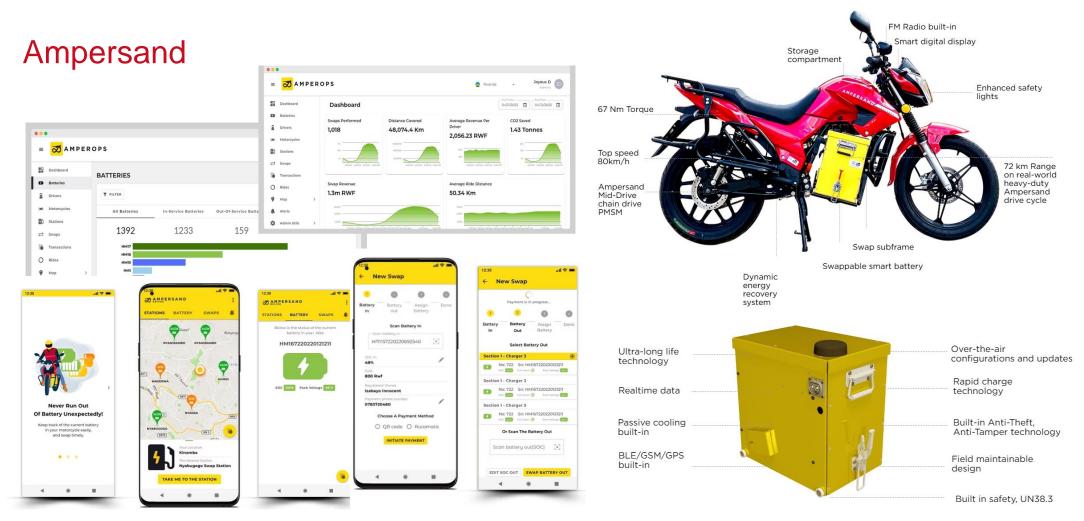
Motivation

Drivers purchase or leases a pay-as-youdrive Ampersand e-moto

Through Ampersand's Driver App, they check when the battery is low and visit a battery swap station

In less than 2 minutes, Ampersand swaps out the depleted battery for a new one and the driver pays for the energy used

The driver continues their day, swapping when required


Dynamic energy recovery

Motivation

Results

Technological Innovation Analysis

Assess how technological advancements are reshaping the transportation sector, structure and functions, focusing on key drivers, barriers, and opportunities for growth.

Drivers of Adoption

- Environmental Concerns
- Cost-Effective
- Improvements in technology

Technological Innovations

- Battery-Swapping Stations
- Charging Infrastructure
- Energy Storage

Market Impact

- EconomicEmpowerment
- Rural and Urban Connectivity
- Knowledge diffusion

Electric Two-Wheelers (E2W)

F1: Entrepreneurship, F2: Knowledge Development, F3: Knowledge Diffusion,

F4: Guidance of Search, F5: Market Formation, F6: Resource Mobilization, F7: Legitimacy

Business Model Analysis - Economic

Source: Ampersand Impact

Cost Structure

- Motorbike & battery production
- R&D, technology development
- Workforce & maintenance costs

Value Proposition

- Lower operating costs for riders
- Fast & convenient battery swaps
- Reduced fuel dependency & price fluctuations

Revenue Streams

- Direct sales & leases of electric motorbikes
- Pay-per-swap battery model and subscriptions

Key Business Components

Partners: Fl's, Battery manufacturers,

Government regulators

Activities: Expanding battery swap stations, e-motorbike production

Resources: Digital fleet management,

charging infrastructure

Business Model Analysis - Environmental

Source: Ampersand Impact

Energy Efficiency & Usage

- Lower energy consumption compared to petrol bikes
- Energy usage electricity mix (renewable vs. grid power)

Eco-Friendly Supply Chain & Distribution

- Locally assembled bikes to reduce import emissions
- Global supply chains for raw materials with sustainability focus

Sustainable Production & Materials

- Lithium-ion batteries, steel, and composites: Resource recovery
- Sustainable manufacturing

Key Environmental Benefits

- 75% lower greenhouse gas emissions vs. petrol motorbikes
- Reduces 2-3 tonnes of CO₂
 emissions per e-motorbike
 annually
- Improves air quality in urban areas

Business Model Analysis - Social

Source: Ampersand Impact

End Users

- Boda Boda Riders
- Logistics and delivery services
- Individual commuters

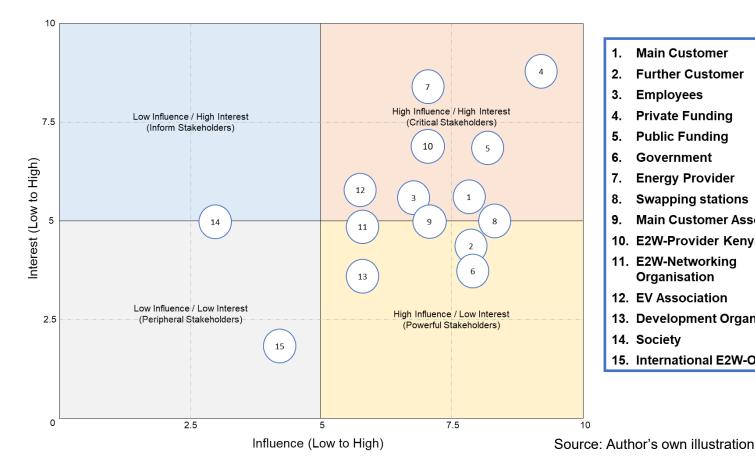
Social Value & Impact

- Affordable & accessible transport
- Safety & reliability for riders
- Public health benefits (less pollution)

Empowering Local Communities

- Job creation & fair opportunities (career, wages)
- Promoting social equity

Community Outreach


- Over **3,350 riders** in Kenya & Rwanda (expanding to 5M by 2033)
- Strengthening commercial fleets
- Bridging technology adoption & infrastructure gaps

Stakeholder Analysis

- Collected different stakeholders from the theoretical part (all relevant actors in Kenyan E2W ecosystem)
- Analysed stakeholders with influence-impact matrix

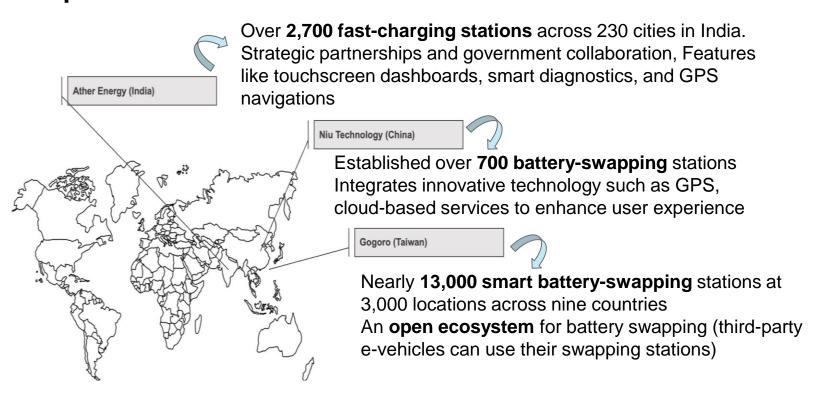

- Main Customer
- **Further Customer**
- **Employees**
- **Private Funding**
- **Public Funding**
- Government
- **Energy Provider**
- Swapping stations
- **Main Customer Association**
- 10. E2W-Provider Kenya
- 11. E2W-Networking **Organisation**
- 12. EV Association
- 13. Development Organisation
- 14. Society
- 15. International E2W-Operator

Fig. Influence-Interest Matrix

Comparative Case Studies

Relevance to Kenyan Context

- Open Battery-Swapping Ecosystem
 - Common swapping infrastructure
- Strategic Infrastructure
 Deployment
 High-traffic urban areas
- Affordable Payment Models
 - Pay-as-you-go and subscription models
- Partnerships
 Collaborations with different stakeholders

Findings and Analysis

Market Potential & Business Models

Growing Demand: Boda boda sector adoption Swapping cost per battery – 240 KES (1.68 Euros) Number of Swapping Station – 16 (Source: Benoit, 2023)

KPs:

- Ownership Model High upfront cost, limited financing options.
- Lease-to-Own More accessible but needs stronger microfinance
- Battery Swapping Cost-effective, reduces range anxiety
- Fleet/Ride-Hailing High scalability but affordability & convenience

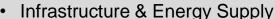
"Battery Swapping gaining traction due to affordability & convenience technology innovation"

Key Lessons from Ampersand

Battery Swapping = Higher Adoption

Microfinance Partnerships = Increased Accessibility

Technological Innovation = Enhances User Experience



Government Incentives = Faster Market Growth

Test Rides & Training = Overcoming Skepticism

Challenges (4)

- Battery Technology & Supply Chain
- Economic & Market Barriers
- Policy & Regulatory Challenges

Opportunities

- Technology & Innovation
- Environmental Impact & Sustainability
- Cost Savings & Economic Benefits
- Government & Investor Support

1 Kenyan Shilling = 0.0070 Euros (Exchange rate 03.04.2025)

Berlin

Key Takeaways and Outlook

Key Takeways

- Economic Sustainability: A Cost-Effective Mobility Solution
 - ~45% cost savings for riders compared to petrol alternatives
 - Job Creation & Industrial Growth
- Social Impact: Accessibility & Improved Livelihoods
 - > ~50% higher earnings for boda-boda (motorcycle taxi) riders
 - **Energy Inclusion & Mobility Access**
 - Health Benefits
- Environmental Sustainability: Reducing Carbon Footprint
 - Prevents 2-3 tonnes of CO₂ emissions annually
 - Renewable Energy Integration

Outlook

- Growth Potential & Market Expansion
- Policy & Regulatory Support is Key
- Infrastructure & Battery Technology Advancements
- Public-Private Partnerships Drive Scalability

Future Directions

- Financial Models for Affordability & Scalability
- Smart Battery Swapping Networks (Al Driven Optimization) & IoT Integration
- Perception & Behavioral Studies on EV Adoption
- Government Incentives & Policy Recommendations
- Evaluating the impact of import duty exemptions, tax incentives, and subsidies on EV adoption.

Additional Sources

- [1] Ampersand. (n.d.). OUR IMPACT. AMPERSAND. https://www.ampersand.solar/impact
- [2] Cerulli, N. (2024). E-mobility in Sub-Saharan Africa: Electric two wheelers gaining momentum. Cleantech Group. https://www.cleantech.com/e-mobility-in-sub-saharan-africa-electric-two-wheelers-gaining-momentum/
- [3] Dahir, A. L. (2023). Kenya suffers third major power blackout in four months. *The New York Times*. https://www.nytimes.com/2023/12/11/world/africa/kenya-blackout.html
- [4] Dankers, J. (2024). The dynamics and challenges of electric two-wheeler development in Nairobi, Kenya (Master's thesis). Eindhoven University of Technology. https://research.tue.nl/en/studentTheses/the-dynamics-and-challenges-of-electric-two-wheeler-development-i
- [5] Joyce, A., & Paquin, R. L. (2016). The triple layered business model canvas: A tool to design more sustainable business models. Journal of Cleaner Production, 135, 1474-1486. https://doi.org/10.1016/j.jclepro.2016.06.067
- [6] Kenyan Ministry of Roads and Transport. (2024). 'Draft National E-Mobility Policy, Kenya'. Ministry of Roads and Transport, Kenya. https://policy/ault.africa/policy/kenyan-draft-national-e-mobility-policy/
- [7] Nyabira, B., Muigai, J., & Onyango, A. (2023). Why Kenya could be getting ahead of itself in electric vehicles drive. Business Daily. https://www.businessdailyafrica.com/bd/opinion-analysis/columnists/why-kenya-could-be-getting-ahead-in-electric-vehicles-drive-4167214

Thank you for your attention!

Appendix

Business Model Analysis - Economic

Partners

- Battery suppliers & manufacturers
- Government & regulatory bodies (for incentives, policies)
- Financial institutions
- Renewable energy providers

Activities &

- Establishing battery swap stations & Expanding
- Manufacturing

Resources

- Digital fleet management platform
- Infrastructure & stations

Value

Proposition

- Lower operational costs
- Faster, convenient battery swaps
- · Reduced fuel dependency & price fluctuations

Customer e Relationship

- Subscription & pay-per-swap models
- Maintenance

- 1,150 in Kenya and 2,200 in Rwanda (e2w)
- 5 million by 2033

Customer Segments

- Boda Boda Riders
- · Logistics and delivery services
- Individual commuters

Source: Ampersand Impact

Costs

- Battery & motorbike production costs
- R&D & Technology development
- Workforce & Maintenance costs

Revenues

- · Direct sales and leases of motorbikes
- Pay-per-Swap option, Monthly subscription
- Carbon Credit Sales

Fig. Business model analysis of Ampersand from an economic perspective

Source: Author's own illustration, based on (Joyce and Paguin 2016)

Assessing the economic, social and environmental sustainability potential of a battery-swap motorbike business model in Kenya 19th International Conference on Energy Economics and Technology | ENERDAY 2025 | 04.04.2025

APPENDIX

Business Model Analysis - Environmental

Supplies \www. and Out-sourcing

- · Energy, Batteries and components
- Global supply chains for battery raw materials
- Local assembly to reduce import reliance

Production 444

- 21,000-squaremeter facility 60 e2w/day
- Sustainable manufacturing

Materials

- Lithium-ion batteries
- Steel, aluminium
- Plastics and composites

Functional Value

- Community Engagement
- Accessibility
- Affordability
- Education and Awareness
- Safety & Reliability
- Sustainability

End-of-Life

- Battery Recycling
- · Proper disposal methods

Distribution **....**

- · Network of battery swap stations
- Collaborations in integration

Use Phase

- Emission Reductions: 2 to 3 tonnes annually/e2
- Operational Efficiency
- Energy usage for software. influenced by electricity mix

Environmental Impacts

- 75% less lifecycle greenhouse emissions than petrol motorbikes using grid power
 - Air Quality Improvement

Environmental Benefits

- · Climate Change Mitigation
- · Toxicity Reduction
- Sustainable Development

Fig. Business model analysis of Ampersand from an environmental perspective

Source: Author's own illustration, based on (Joyce and Paguin 2016)

APPENDIX

Business Model Analysis - Social

Local Communities

- Engagement with Boda **Boda Riders**
- Job Opportunity
- Equity

Governance 🖍

Transparent

Employees 👬

- Fair Wages and Benefits
- Inclusion
- Job. Skills Development

Social

- Community Engagement
- Accessibility

Value

- Affordability
- Education and **Awareness**
- Safety & Reliability
- Sustainability

- Societal Culture Technology Adoption
- Infrastructure Gaps

Scale of Scale of Scale Outreach

- 1,150 in Kenya and 2,200 in Rwanda (e2w)
- 5 million by 2033

End-User *

- · Logistics and delivery services
- Individual commuters

Source: Ampersand Impact

Fig. Business model analysis of Ampersand from social **perspective**

Source: Author's own illustration, based on (Joyce and Paquin 2016)

Social Impacts

- Improve Accessibility to Transportation
- Public Health
- Long-Term Social Sustainability

Social Benefits

- Community Development
 - Job Creation and Economic **Empowerment**

Assessing the economic, social and environmental sustainability potential of a battery-swap motorbike business model in Kenya 19th International Conference on Energy Economics and Technology | ENERDAY 2025 | 04.04.2025