Mandatory vs. Voluntary a priori Investment in Information Acquisition in Procurement Auctions

Runxi Wang, joint work with Karl-Martin Ehrhart and Marion Ott

ENERDAY 2025, Dresden, April 4, 2025

Karlsruhe Institute of Technology (KIT), Germany runxi.wang@kit.edu

Outline

- Introduction
- Methods
- Results
- Conclusion

- Procurement auctions are crucial for securing goods/services at competitive prices
- Key challenge: High uncertainty for bidders regarding future costs, particularly prominent in renewable energy auctions
- Common practice: certain prequalification prior to entering the auction (Kreiss et al. 2017) ⇒ a priori investment in information acquisition
- Impact of the mandatory setting:
 - Reduce uncertainties regarding future costs
 - Reduce participation and competition (Samuelson 1985)
 - Exclude potential interested bidders, leading to inefficiency
- Alternative: voluntary setting, e.g., German photovoltaic auctions (Bundestag 2017)
- Research question: Mandatory vs. voluntary a priori investment in information acquisition

- Procurement auctions are crucial for securing goods/services at competitive prices
- Key challenge: High uncertainty for bidders regarding future costs, particularly prominent in renewable energy auctions
- Common practice: certain prequalification prior to entering the auction (Kreiss et al. 2017)
 ⇒ a priori investment in information acquisition
- Impact of the mandatory setting:
 - Reduce uncertainties regarding future costs
 - Reduce participation and competition (Samuelson 1985)
 - Exclude potential interested bidders, leading to inefficiency
- Alternative: voluntary setting, e.g., German photovoltaic auctions (Bundestag 2017)
- Research question: Mandatory vs. voluntary a priori investment in information acquisition

- Procurement auctions are crucial for securing goods/services at competitive prices
- Key challenge: High uncertainty for bidders regarding future costs, particularly prominent in renewable energy auctions
- Common practice: certain prequalification prior to entering the auction (Kreiss et al. 2017)
 ⇒ a priori investment in information acquisition
- Impact of the mandatory setting:
 - Reduce uncertainties regarding future costs
 - Reduce participation and competition (Samuelson 1985)
 - Exclude potential interested bidders, leading to inefficiency
- Alternative: voluntary setting, e.g., German photovoltaic auctions (Bundestag 2017)
- Research question: Mandatory vs. voluntary a priori investment in information acquisition

- Procurement auctions are crucial for securing goods/services at competitive prices
- Key challenge: High uncertainty for bidders regarding future costs, particularly prominent in renewable energy auctions
- Common practice: certain prequalification prior to entering the auction (Kreiss et al. 2017)
 ⇒ a priori investment in information acquisition
- Impact of the mandatory setting:
 - Reduce uncertainties regarding future costs
 - Reduce participation and competition (Samuelson 1985)
 - Exclude potential interested bidders, leading to inefficiency
- Alternative: voluntary setting, e.g., German photovoltaic auctions (Bundestag 2017)
- Research question: Mandatory vs. voluntary a priori investment in information acquisition

Related literature

Auctions with participation costs

- Pure strategy (cutoff strategy): Samuelson (1985), McAfee and McMillan (1987), Tan and Yilankaya (2006), Celik and Yilankaya (2009), and Gillen et al. (2017)
- Mixed strategy (randomized participation): Levin and Smith (1994), Menezes and Monteiro (2000), and Jehiel and Lamy (2015)

Information acquisition before or during auctions

- General: Stegeman (1996), Persico (2000), Bergemann and Välimäki (2002), and Schweizer and Szech (2017)
- Static vs. dynamic auction: Compte and Jehiel (2007), Gretschko and Wambach (2014), and Gretschko and Simon (2024)

Our paper complements the existing literature on the voluntary setting and the comparison between mandatory and voluntary settings

Related literature

Auctions with participation costs

- Pure strategy (cutoff strategy): Samuelson (1985), McAfee and McMillan (1987), Tan and Yilankaya (2006), Celik and Yilankaya (2009), and Gillen et al. (2017)
- Mixed strategy (randomized participation): Levin and Smith (1994), Menezes and Monteiro (2000), and Jehiel and Lamy (2015)

Information acquisition before or during auctions

- General: Stegeman (1996), Persico (2000), Bergemann and Välimäki (2002), and Schweizer and Szech (2017)
- Static vs. dynamic auction: Compte and Jehiel (2007), Gretschko and Wambach (2014), and Gretschko and Simon (2024)

Our paper complements the existing literature on the voluntary setting and the comparison between mandatory and voluntary settings

Model

- Single-unit second-price procurement auction
- $N \ge 2$ risk-neutral firms (potential bidders)
- Each firm has private costs x_i , which are a priori unknown to the firm
- x_i is the realization of the random variable $X_i, i \in \{1, ..., N\}$, i.i.d. on $[\underline{x}, \overline{x}]$ with F and f
- The realization of X_i can only be known after an investment $c \ge 0$ in information acquisition
- The auctioneer has the maximum WTP $x_0, x_0 > \underline{x}$ and sets a reserve price $r \leq x_0$

Settings

Mandatory setting:

- The auctioneer requires a priori investment in information acquisition
- For participants: c is sunk costs and x_i is known $\Rightarrow \beta(x_i) = x_i$ if $x_i \leq r$

Voluntary setting

- An investment in information acquisition is voluntary, except for the winner
- For investors: c is sunk costs and x_i is known $\Rightarrow \beta(x_i) = x_i$ if $x_i \leq r$
- For non-investors: only the distribution of X_i is known $\Rightarrow \beta = \mathbb{E}[X_i] + c$ if $\mathbb{E}[X_i] + c \leq r$ $\mathbb{E}[X_i] + c := \mathbb{E}[X] + c, \forall i \in \{1, ..., N\}$

Settings

Mandatory setting:

- The auctioneer requires a priori investment in information acquisition
- For participants: c is sunk costs and x_i is known $\Rightarrow \beta(x_i) = x_i$ if $x_i \leq r$

Voluntary setting

- An investment in information acquisition is voluntary, except for the winner
- For investors: c is sunk costs and x_i is known $\Rightarrow \beta(x_i) = x_i$ if $x_i \leq r$
- For non-investors: only the distribution of X_i is known $\Rightarrow \beta = \mathbb{E}[X_i] + c$ if $\mathbb{E}[X_i] + c \leq r$ $\mathbb{E}[X_i] + c := \mathbb{E}[X] + c, \forall i \in \{1, ..., N\}$

Possible symmetric equilibria

Our analysis identifies five types of symmetric equilibria depending on c and r

- E₀: No participation
- E_1^f : Full participation, all firms participate and invest c
- ullet E_1^r : Randomized participation, all firms participate and invest c with probability $q \in (0,1)$
- E_2 : All firms participate without investment with probability $q' \in (0,1]$
- E_{mix} : All firms participate and invest c with probability $q_1 \in (0,1)$ and participate without investment with $q_2 \in (0,1)$, $q_1 + q_2 \leq 1$.

Different equilibria depending on c and r

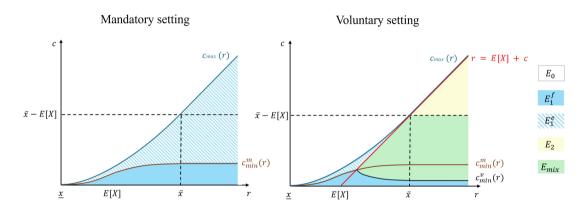


Figure: Different equilibria depending on c and r in mandatory and voluntary settings

Comparison between mandatory and voluntary settings

- **Expected participation**: voluntary setting ≥ mandatory setting
- **Expected a priori investment**: voluntary setting < mandatory setting
- - E_1^f : $r^* = x_0 \frac{F(r_j^*)}{f(r^*)}$ (Krishna 2010)
 - E_1^e : $r^* = x_0$ (Jehiel and Lamy 2015)

 - E_2 : $r^* \in [\bar{x}, x_0]$ E_{mix} : $r^* = x_0 \frac{F(r_j^*)}{f(r_i^*)} \frac{1-q_1}{q_1f(r_i^*)}$

Comparison between mandatory and voluntary settings

- **Expected participation**: voluntary setting ≥ mandatory setting
- Expected a priori investment: voluntary setting < mandatory setting
- Optimal reserve price: different locally optimal reserve prices
 - E_1^f : $r^* = x_0 \frac{F(r_j^*)}{f(r_i^*)}$ (Krishna 2010)
 - E_1^e : $r^* = x_0$ (Jehiel and Lamy 2015)

 - E_2 : $r^* \in [\bar{x}, x_0]$ E_{mix} : $r^* = x_0 \frac{F(r_j^*)}{f(r_i^*)} \frac{1-q_1}{q_1f(r_i^*)}$

Given c, the globally optimal reserve price r^* is continuous and increases in x_0

- The auctioneer's expected profit: Depending on c and x_0 , either setting can be favored

References

Comparison between mandatory and voluntary settings

- **Expected participation**: voluntary setting ≥ mandatory setting
- **Expected a priori investment**: voluntary setting < mandatory setting
- Optimal reserve price: different locally optimal reserve prices
 - E_1^f : $r^* = x_0 \frac{F(r_i^*)}{f(r_i^*)}$ (Krishna 2010)
 - E_1^e : $r^* = x_0$ (Jehiel and Lamy 2015)

 - E_2 : $r^* \in [\bar{x}, x_0]$ E_{mix} : $r^* = x_0 \frac{F(r_j^*)}{f(r_i^*)} \frac{1-q_1}{q_1f(r_i^*)}$

Given c, the globally optimal reserve price r^* is continuous and increases in x_0

- The participants' expected profit: voluntary setting \succ mandatory setting if c is sufficiently high to exclude potential bidders
- The auctioneer's expected profit: Depending on c and x_0 , either setting can be favored

References

Comparison between mandatory and voluntary settings

- **Expected participation**: voluntary setting ≥ mandatory setting
- **Expected a priori investment**: voluntary setting \leq mandatory setting
- Optimal reserve price: different locally optimal reserve prices
 - E_1^f : $r^* = x_0 \frac{F(r_i^*)}{f(r_i^*)}$ (Krishna 2010)
 - E_1^e : $r^* = x_0$ (Jehiel and Lamy 2015)

 - E_2 : $r^* \in [\bar{x}, x_0]$ E_{mix} : $r^* = x_0 \frac{F(r_i^*)}{f(r_i^*)} \frac{1-q_1}{q_1 f(r_i^*)}$

Given c, the globally optimal reserve price r^* is continuous and increases in x_0

- **The participants' expected profit**: voluntary setting \succ mandatory setting if c is sufficiently high to exclude potential bidders
- The auctioneer's expected profit: Depending on c and x_0 , either setting can be favored
- Expected welfare: $r = x_0$ is welfare maximizing, voluntary setting \succ mandatory setting

Conclusion

The current analysis of our model shows advantages of the voluntary setting over the mandatory setting in terms of

- higher expected participation
- higher expected welfare
- higher participants' expected profit if the information cost is sufficiently high
- in certain cases even higher auctioneer's expected profit

Answer to our research question: voluntary setting \succeq mandatory setting

Conclusion

The current analysis of our model shows advantages of the voluntary setting over the mandatory setting in terms of

- higher expected participation
- higher expected welfare
- higher participants' expected profit if the information cost is sufficiently high
- in certain cases even higher auctioneer's expected profit

Answer to our research question: voluntary setting \succeq mandatory setting

References I

Bergemann, Dirk and Juuso Välimäki (2002). "Information Acquisition and Efficient Mechanism Design". In: Econometrica 70.3, pp. 1007–1033. ISSN: 00129682. 14680262. URL: http://www.istor.org/stable/2692306 (visited on 01/26/2025).

Bundestag (2017). Renewable Energy Sources Act (EEG 2017) - English Version. accessed March 23rd, 2018. URL: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sources-act-2017.pdf?_blob=publicationFile&v=3.

Celik, Gorkem and Okan Yilankaya (2009). "Optimal auctions with simultaneous and costly participation". In: The BE Journal of Theoretical Economics 9.1, p. 0000102202193517041522.

Compte, Olivier and Philippe Jehiel (2007). "Auctions and information acquisition: sealed bid or dynamic formats?" In: The Rand Journal of Economics 38.2, pp. 355–372.

Gillen, Philippe, Vitali Gretschko, and Alexander Rasch (2017). "Pre-auction or post-auction qualification?" In: Economic Theory Bulletin 5, pp. 139–150.

Gretschko, Vitali and Jasmina Simon (2024). "An Efficient Dynamic Mechanism with Covert Information Acquisition". In: ZEW-Centre for European Economic Research Discussion Paper 24-081.

Gretschko, Vitali and Achim Wambach (2014). "Information acquisition during a descending auction". In: Economic Theory 55, pp. 731–751.

Jehiel, Philippe and Laurent Lamy (2015). "On discrimination in auctions with endogenous entry". In: American Economic Review 105.8, pp. 2595–2643.

References II

Kreiss, Jan, Karl-Martin Ehrhart, and Marie-Christin Haufe (2017). "Appropriate design of auctions for renewable energy support-Prequalifications and penalties". In: Energy Policy 101. pp. 512–520.

Krishna, Vijay (2010). Auction theory. 2nd. Academic Press.

Levin, Dan and James L Smith (1994). "Equilibrium in auctions with entry". In: The American Economic Review, pp. 585–599.

McAfee, R Preston and John McMillan (1987). "Auctions with entry". In: Economics Letters 23.4, pp. 343-347.

Menezes, Flavio M and Paulo K Monteiro (2000). "Auctions with endogenous participation". In: Review of Economic Design 5, pp. 71-89.

Persico, Nicola (2000). "Information acquisition in auctions". In: Econometrica 68.1, pp. 135–148.

Samuelson, William F. (1985). "Competitive bidding with entry costs". In: Economics Letters 17, pp. 53–57. ISSN: 0165-1765. DOI: http://dx.doi.org/10.1016/0165-1765(85)90126-0.

Schweizer, Nikolaus and Nora Szech (2017). "Revenues and welfare in auctions with information release". In: Journal of Economic Theory 170, pp. 86–111.

Stegeman, Mark (1996). "Participation costs and efficient auctions". In: Journal of Economic Theory 71.1, pp. 228–259.

Tan, Guofu and Okan Yilankaya (2006). "Equilibria in second price auctions with participation costs". In: Journal of Economic Theory 130.1, pp. 205–219.