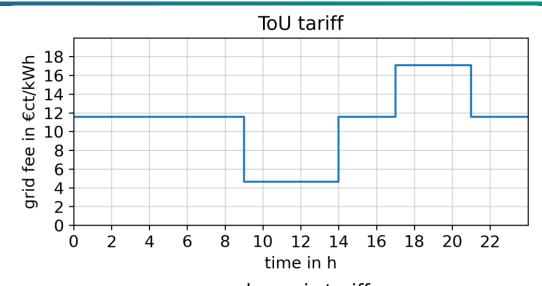
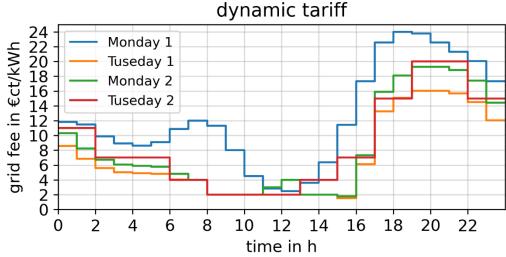
Signals In, Reactions Out

Navigating Design and Modeling Challenges in Dynamic Grid Fees

Dipl.-Ing. Rebecca Hofmann

Motivation


- From past to future
 - Past: generation adjusted to demand
 - Future: demand adjusted to available generation
- Current grid fee designs
 - Little to no incentives to provide demand side flexibility
- Effective system: endogenous signals
 - Availability of generation market signal
 - Availability of transport capacities grid signal

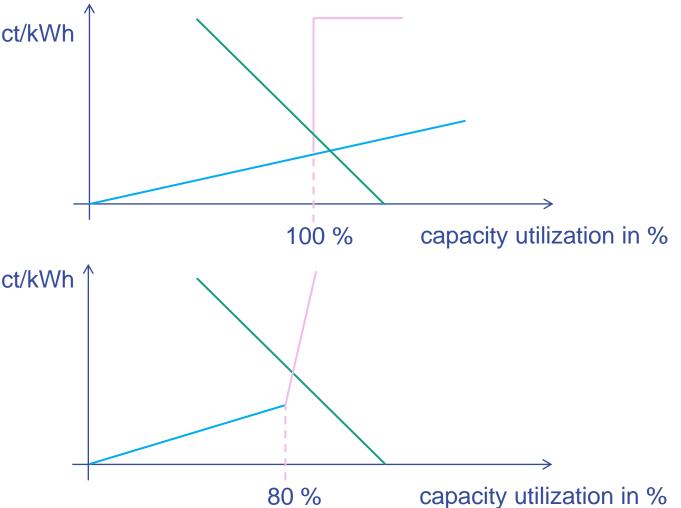

Grid Signals

- Include grid signal in market price
 - Market split
 - Nodal pricing
 - Only for transmission grid
- Separate grid signal

Grid utilization from load flow calculations

- Time variable, e.g. Time-of-Use (ToU)
 - Calculated once, apply for e.g. one year
- Dynamic
 - Calculated close to real time, e.g. daily

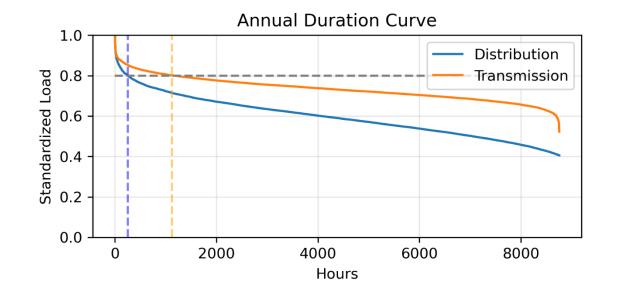
Design options – determination of rate


Which factors have to be considered when determining the amount of the grid fee?

- Cost reflectivity
 - Only reflect variable grid costs in variable rate
 - Reflect utilization of grid by consumer in the grid fee
 - Measurement of utilization by (relative) capacity rather than volume
 - Temporal and spatial granularity for precise reflection
 - Allow for negative rate?

Determination of rate - optimal pricing

- Variable costs: mainly driven by losses $P_{\rm L} = P^2 \cdot \frac{R}{U^2} \rightarrow \text{linear marginal costs}$
- Elastic demand
- Scarcity
 - Where is the threshold?
 - Surplus revenue
- Jump → shifting effects, over-curtailment ct/kWh ↑
 - Other curves
 - Price above marginal cost inefficient
 - Where is the threshold?



Design options – determination of rate

Which factors have to be considered when determining the amount of the grid fee?

Cost recovery

- Recover the variable cost of the system operator (e.g. 20%, Simshauer 2015)
- Possible definition of threshold by definition of peak hours
- Example: 20% top load values
 → two-tier rate
 (based on: Haro 2017)
- values can be changed / added

Design options – process

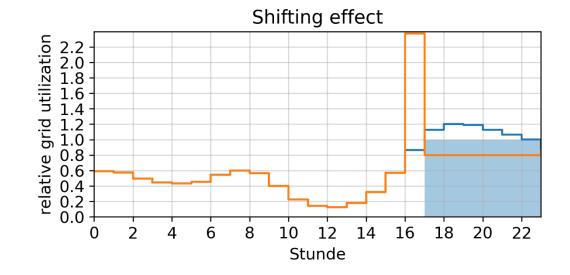
Fairness

- Fair design (potentially inefficient system)
 - Consumer vs. prosumer, Household vs. industry
 - Avoid possibility of de-solidarization
- Ensure fairness through other means
 - Base price, taxation
- Covered voltage levels
 - Installed flexibility: mostly distribution
 - Congestion as of today: mostly transmission
 - TSO and DSO signals could be counteracting
 - Superposition of signals: top-down vs. bottom-up

Timing

- Grid utilization is a result of market activities is a result of grid tariffs is a result of grid utilization is a result of market activities is a result of grid tariffs is a result of grid utilization...
 - As close as possible to market closing
 - As soon as possible before market opening
- Shifting effect
 - Real-time coordination

Challenges and decisions in modeling


- Amount-setting
 - Cost reflectivity: How elastic is demand?
 - Bias free models
 - Modelling of constant elasticity difficult
 - Cost recovery: Which base price to set?
 - Interdependencybase price dynamic price

- Fairness
 - Consumer groups
- Superposition
 - Linked TSO and DSO signals
- Computational expenses

Evaluation of effectiveness

- Simultaneous triggering of load shift
 - Shifting effect
- Distortion of market equilibrium
- Exemption of storages and electrolyzers from grid fees (e.g. in Germany)
- Digitalization
 - Ability of customers to use signals
 - Ability of SOs to generate signals

Conclusion

Efficient activation of so far unused flexibility

Challenges:

- Design: determination and calculation of rate, embedding grid signal in overall energy system
- Modelling: bias, computational expenses
- Implementation: digital infrastructure & regulatory framework

Contact

Dipl.-Ing. Rebecca Hofmann Control and Integration of Grids

Solar Info Center – Aufgang Nord – 2. OG Emmy-Noether-Straße 2 79110 Freiburg im Breisgau

+49 761 / 203 – 54261 rebecca.hofmann@inatech.uni-freiburg.de

