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Motivation

= Challenge of sufficient timely supply in low-emission hydrogen

Projected European hydrogen demand

= Limitations in scaling up electrolysis capacity and seaborne imports of H, carriers 2500
Industry
= Low-carbon (blue) hydrogen can play a role in the transition 2000 - : ::’aﬁigo rt
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Perspective on transition of fossil fuel exporting countries: S 1000
[
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Case Study: Norwegian/Algerian switch from natural gas to H, exports o o RS © o
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Research questions: Data source: European Hydrogen Backbone

What are timelines and switching points from natural gas directly to renewable hydrogen or via low-
carbon hydrogen?

What are the related costs and emission implications for H, exports?

What are the impacts of different scenarios when utilizing blue hydrogen?



Case Studies — Ramping Up Hydrogen Exports

Non-EU to EU Pipeline corridors and potentials

Hydrogen production at feed-in points of existing NG pipelines in the

Norwegian North Sea and at Algerian gas fields

Retrofitting along existing routes possible

CO, transport: 150/650 km of average distance to CO, storage sites

RES: Offshore Wind (Norway); PV/Onshore Wind (Algeria)




Methodology

Objective function of techno-economic MIP Model
Minimize total system costs over the whole transition timeframe 2025 — 2050

Inputs Outputs
= Hourly RES profiles = Total and annual supply costs and production
= Country-dependent existing infrastructure costs over time frame
= (Capital and operational costs = Capacity expansions H,/CO,:
= Learning curves for RES/H, production = Production and transport infrastructure
= Price assumptions for CO,/NG = RES
= Ramp-up limitations (infrastructural capacities, = Storages
blue hydrogen limits, ...) » CO, emitted and captured (from NG/BH,
= Annual energy demand production)
LI = Retrofitting decisions
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= WACC of 6.6% (NOR) and 10.2% (ALG)
= Learning Curves H, technologies/RES

=  Upstream and midstream leakages



Annual change in supply costs for greenfield H2 supply chain

With upstream/midstream emissions
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= Using new H, pipelines would increase cost
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Annual change in supply costs for greenfield H2 supply chain

Without upstream/midstream emissions
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=  Base, minimum and maximum supply costs

NG extraction cost =~ 10 €/MWh
NG market price = 25 €/ MWh

Blue H2 scenarios:
= BH2 in NOR/ALG with NG extraction cost
= BH2 in NOR/ALG with NG market price

= Using new H, pipelines would increase cost
by around 5 €/MWh (0.17 €/kg)



UTN
Required CO2 price in given year for BH2 or GH2 to reach supply cost parity with
Natural Gas
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Hydrogen Demand Supply: System and Abatement Costs

1800 1 mmm Export share Scenarios
B EU Demand
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Total European Hydrogen Demand until 2050 (only industry
and power sector, EHB) and assumed export country supply share of 15 %
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System Cost and Average Abatement Cost

(B) Algeria

(A) Norway
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System Cost and Average Abatement Cost
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UTN
Early Blue Hydrogen phase-out

=  H2Mix-YEAR: Additional condition, that all blue hydrogen production plants have to be depreciated until YEAR and blue hydrogen as
energy carrier cannot be used to meet any share of demand from YEAR onwards.
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Norway

Implications

= CO, prices and current cost reduction projections for RES and electrolysis not enough for timely and sufficient
competitiveness of green hydrogen against natural gas and blue hydrogen

= High CO, price may force earlier switch Natural Gas 2 Hydrogen but not specifically Blue Hydrogen - Green Hydrogen as
it only insignificantly affects the cost of BH,

» Further incentives needed to accelerate green hydrogen production and exports?

= Low risk of stranded investments into blue hydrogen supply chain under the presented assumptions
» Forcing BH2 phase-out before 2050 significantly increases overall system and abatement cost




Algeria

Implications

= CO, prices and current cost reduction projections for RES and electrolysis could lead to sufficient competitiveness of green
hydrogen against natural gas and blue hydrogen in the medium-term (mainly due to methane upstream emissions)

= High CO, price may force earlier switch Natural Gas 2 Hydrogen, without using Blue Hydrogen as a transitional technology
(only from a cost-perspective)

» Strategically, implementation gap between hydrogen needs and green hydrogen deployment may cause further issues

= Higher risk of stranded investments into blue hydrogen supply chain under the presented assumptions
» Forcing BH2 phase-out before 2050 has low impact on overall system and abatement cost
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Norway as an energy exporter

Energy product Production Import Export Total domestic supply SIS
Natural Gas 1269.9 0.7 1223.7 46.4 n Exce"ent partnerships with Europe
Oil and oil products (excl. bio) 1075.0 106.1 1083.6 84.0
Electricity 144.3 13.3 25.8 131.8 =  Existing infrastructure (fossil fuel industry) and financial strength
Biofuels 15.0 5.5 1.4 19.2
Waste 5.4 0.0 0.0 5.4 =  Available natural gas production, CO, storage and experience in CO, infrastructure
All energy products 2510.5 134.9 2335.1 296.2 L. .
=  100% RES electricity with large seasonal storage but dependent on annual
precipitation, but also integration with neighbors
Perspective:
Pipeline Length Capacity Max. energy flow * Increasing electricity demand requires additional RES and plans for new electricity
[km] [bcm] [GW] [TWh] interconnectors
Norpipec 440 16.0 18.2 159.5
Europipe I 620 16.7 19.0 166.3 =  Temporal export of blue hydrogen could provide a timely alternative for the
Europipe 11 658 26.0 20.6 259.1 reduction in European fossil gas demand which can rely on existing infrastructure
Franpipe 840 20.0 22.8 199.4 . . . .
Zeepipe 844 15.4 175 153.6 Potential of offshore wind to replace blue hydrogen over time (30 GW by 2040)
= Cost of hydrogen important result for Norway using transition through blue

hydrogen

Export of surplus electricity could phase lower prices due to low prices on electricity
spot market



Case Studies — Ramping Up Hydrogen Exports

Objective function of MIP Model
Minimize total system costs over the whole timeframe 2025 —
2050
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Methodology
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Annual change in supply costs for greenfield H2 supply chain

PROVISO
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Sensitivity Analysis — GH,

Preliminary results
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FI1GURE 15. Sensitivities for green hydrogen supply costs
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System Cost and Abatement Cost
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System Cost and Abatement Cost
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Norway

Algeria

Abatement scenarios H2Mix unrestricted and H2Mix-2040
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FIGURE 19. H2Mix-unrestricted: Production and Capacities (Norway) FIGURE 21. H2Mix-2040: Production and Capacities (Norway)
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FIGURE 20. H2Mix unrestricted: Production and Capacities (Algeria)
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FIGURE 22. H2Mix-2040: Production and Capacitics (Algeria)
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